Fourier Transform

Given a LTI system: \(h(n) \)

Input a sinusoid (exp.) sequence \(x(n) = e^{j\omega n} \) \(-\infty \leq n \leq \infty \)

\[
y(n) = \sum_{k=-\infty}^{+\infty} h(k) e^{j\omega(n-k)}
\]

\[
= e^{j\omega n} \sum_{k=-\infty}^{+\infty} h(k) e^{-j\omega k} = H(\omega) e^{j\omega n}
\]
Fourier Transform

\[H(\omega) = \sum_{k=-\infty}^{+\infty} h(k) e^{-j\omega k} \]

- Angular frequency

- Fourier transform of \(h(n) \)

\(H(\omega) \) is a continuous function of \(\omega = 2\pi f \)

\(H(f) \) is periodic over \(\omega + 2\pi \)

Given an arbitrary signal (sequence): \(x(n) \)

Fourier transform:

\[X(\omega) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\omega n} \]

- Complex, periodic function of frequency

For time-sequences:

\[\omega = 2\pi f \]

- Angular frequency

Fourier Transform Pair

Fourier transform:

\[X(\omega) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\omega n} \]

Inverse Fourier Transform:

\[x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega \]
Given a LTI system by \(h(n) \):
Response \(y(n) \) -- excitation \(x(n) \)

\[
y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n - k)
\]

via linear convolution

Fourier transform of \(y(n) \)

\[
Y(\omega) = \sum_{n=-\infty}^{+\infty} y(n)e^{-j\omega n}
\]

\[
y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n - k)
\]

\[
Y(\omega) = \sum_{n=-\infty}^{+\infty} \left(\sum_{k=-\infty}^{+\infty} x(k)h(n - k) \right)e^{-j\omega n}
\]

\[
Y(\omega) = \sum_{n=-\infty}^{+\infty} \left(\sum_{k=-\infty}^{+\infty} h(n - k)e^{-j\omega (n-k)} \right)
\]

\[
y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n - k)
\]

\[
Y(\omega) = \sum_{n=-\infty}^{+\infty} \left(\sum_{k=-\infty}^{+\infty} h(n - k)e^{-j\omega (n-k)} \right)
\]

\[
n \rightarrow -\infty: \quad m \rightarrow -\infty \quad m = n - k
\]

\[
n \rightarrow +\infty: \quad m \rightarrow +\infty \quad n = m + k
\]
Linear Time-Invariant System

\[
Y(\omega) = \sum_{k=-\infty}^{\infty} x(k) \sum_{m=-\infty}^{\infty} h(m)e^{-jn(\omega+k)} = \sum_{k=-\infty}^{\infty} x(k)e^{-jn\omega} \sum_{m=-\infty}^{\infty} h(m)e^{-jn\omega}
\]

\[
Y(\omega) = \hat{X}(\omega) \cdot \hat{H}(\omega)
\]

Impulse response

In time domain:

\[
y(n) \quad h(n) \quad x(n)
\]

In freq. domain:

\[
\hat{Y}(\omega) \quad \hat{H}(\omega) \quad \hat{X}(\omega)
\]

Transfer function

In time domain:

\[
y(n) = h(n) * x(n)
\]

In frequency domain:

\[
\hat{Y}(\omega) = \hat{H}(\omega) \cdot \hat{X}(\omega)
\]

Discrete Fourier Transform

Discrete Fourier Transform

In time domain:

\[
y(n) = \sum_{k=-\infty}^{\infty} x(k)e^{-j\omega k}
\]

In freq. domain:

\[
x(n) = \sum_{k=-\infty}^{\infty} y(k)e^{j\omega k}
\]
Periodic Sequences

For periodic sequences \(x(n) = x(n - kN) \)

\[k \text{ : integer; } n = 0, 1, \ldots, N - 1 \quad N \text{ : period length} \]

Discrete Fourier Transform

Fourier Transform:

\[X(\omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n} \]

For periodic sequences

\[X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi \frac{mn}{N}} \]

\(m \): time-sequence with \(N \) number of points

\(X(m) \): complex-valued spectrum (sequence) with the same number of points \(N \)
Discrete Fourier Transform Pair

Discrete Fourier transform (DFT)

\[
X(m) = \sum_{n=0}^{N-1} x(n)e^{-\frac{2\pi}{N}mn}, \quad n, m = 0, 1 \cdots N - 1
\]

Inverse DFT:

\[
x(n) = \frac{1}{N} \sum_{m=0}^{N-1} X(m)e^{\frac{2\pi}{N}nm}
\]

Fundamental Features

- **In time-domain:** \(n = 0, 1 \cdots N - 1 \)
 - with a time resolution \(\Delta t = 1 / f_s \)
- **In frequency-domain:** \(m = 0, 1 \cdots N - 1 \)
 - with a frequency-resolution \(\Delta f = f_s / N \)
- Over \(N \) points \(X(m) \) contains content over the entire frequency range until \(f_s \)
- **Only a half** of them \(0 \leq m < N / 2 \) contains sufficient frequency content of interest

![Diagram of Discrete Fourier Transform Pair](image-url)
Fundamental Features

- **Periodic** time-domain signals lead to **discrete** Fourier Spectrum.

- In frequency-domain: **discrete** Fourier spectrum is also a **periodic** spectrum with the same period length.

- **Periodic** Fourier spectrum leads to **discrete** time-domain sequence.

- A single finite-length sequence can be considered as ‘**periodic**’ when using DFT.

Fundamental Features

Given a time-domain sequence (signal) and its **discrete** Fourier Spectrum: \(x(n) \) \(\rightarrow \) \(X(m) \)

Then: \(x(-n) \) \(\rightarrow \) \(X(-m) \)

- If the time-domain sequence is real-valued, then: \(x(-n) \) \(\rightarrow \) \(X^*(m) \)

(see Assignment 7-8 below)

Fundamental Features

- **Impulse response**

 In time domain: \(y(n) = \sum h(n) \cdot x(n) \)

 In freq. domain: \(Y(m) = H(m) \cdot X(m) \)

- **Transfer function**

 In time domain: \(y(n) = h(n) \ast x(n) \)

 In frequency domain: \(Y(m) = H(m) \cdot X(m) \)
Convolution/correlation

- **Convolution**
 \[x(n) * y(n) = \sum_{k=0}^{N-1} x(k) y(n-k) \]

- **(Cross-)correlation**
 \[x(n) * y(-n) = x(n) \otimes y(n) = \sum_{k=0}^{N-1} x(k) y(n+k) \]

- **Cross-correlation**
 \[g_{xy}(n) = x(n) \otimes y(n) = x(n) * y(-n) \]

- **Auto-correlation**
 \[g_{xx}(n) = x(n) \otimes x(n) = x(n) * x(-n) \]

Cross-Spectrum

- **Cross-spectrum** → Fourier Transform of cross-correlation
 \[g_{xy}(n) \rightarrow G_{XY}(m) \]

- **Cross-correlation of real-valued time sequences**
 \[g_{xy}(n) = x(n) \otimes y(n) = x(n) * y(-n) \]

- **Cross spectrum**
 \[G_{XY}(m) = X(m) Y^*(m) \]

- **Auto-spectrum**
 \[G_{XX}(m) = X(m) X^*(m) = |X(m)|^2 \]

Summary

- **Fourier transforms**
 Spectrum in frequency domain

- **Input/output relation of a LTI system:**
 - In time domain: linear convolution
 - In frequency domain: multiply the transfer function by the input spectrum

- **Time-domain convolution ↔ Spectral multiplication**

- **Discrete Fourier transform**
Assignment #2

1. A time sequence $d(n)$ is given, determine its spectrum $D(\omega)$ in terms of Fourier Transform, and using that detailed expression to show: $D(\omega) = D(\omega + 2\pi)$

2. The response of a LTI system can be expressed by a linear convolution $y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$

 Apply Fourier Transform $Y(\omega) = \sum_{n=-\infty}^{\infty} y(n)e^{-j\omega n}$ to $y(n)$

 as stated above, to prove:
 $$Y(\omega) = H(\omega) \cdot X(\omega)$$

3. Calculate the Fourier transform of a unit sample sequence $\delta(n)$

4. A time signal $x(n) = -5 \cdot \delta(n)$ is given, calculate its Fourier Transform $X(\omega)$. Sketch and discuss the result of $X(\omega)$ as function of angular frequency.

5. A periodic signal $y(n) = 4.2 \cdot \delta(n-k)$ has its period length N where $k < N$ and k is fixed. Calculate its discrete Fourier transform, and sketch the results of its magnitude and phase as function of frequency.

6. Show (prove)
 $$\delta(n) \ast x(n) = x(n)$$

 Convolution of $\delta(n)$ with any sequence $x(n)$

 results in $x(n)$, the sequence itself (unchanged)!
7. Given discrete Fourier transform $X(m)$ of a periodic time sequence $x(n)$ with a period of M, show that the time-reversed sequence $x(-n)$ has a discrete Fourier transform $X(-m)$ namely

$$x(-n) \rightarrow X(-m)$$

8. If the periodic time sequence $x(n)$, is real-valued, show

$$x(-n) \rightarrow X^*(m)$$